Search results for "Integrable function"
showing 10 items of 25 documents
Topological Dual Systems for Spaces of Vector Measure p-Integrable Functions
2016
[EN] We show a Dvoretzky-Rogers type theorem for the adapted version of the q-summing operators to the topology of the convergence of the vector valued integrals on Banach function spaces. In the pursuit of this objective we prove that the mere summability of the identity map does not guarantee that the space has to be finite dimensional, contrary to the classical case. Some local compactness assumptions on the unit balls are required. Our results open the door to new convergence theorems and tools regarding summability of series of integrable functions and approximation in function spaces, since we may find infinite dimensional spaces in which convergence of the integrals, our vector value…
Generators of Random Processes in Ultrametric Spaces and Their Spectra
2009
The L 2(\( \mathbb{S} \)) space of square integrable functions on an ultrametric space \( \mathbb{S} \) has rather specific structure. As a consequence in a natural way there appear in L 2(\( \mathbb{S} \)) the operators of which unitary counterparts in L 2(ℝn) would be difficult to construct. Such class of self-adjoint operators emerge from theory of random processes on ultrametric spaces. In this paper we collect known material on spectral properties of the generators of random processes on \( \mathbb{S}_B \) an ultrametric space of sequences. (The set of p-adic numbers is a subset of \( \mathbb{S}_B \).) Then we discuss structure of the eigenspaces of the generators.
Some Aspects of Vector-Valued Singular Integrals
2009
Let A, B be Banach spaces and \(1 < p < \infty. \; T\) is said to be a (p, A, B)- CalderoLon–Zygmund type operator if it is of weak type (p, p), and there exist a Banach space E, a bounded bilinear map \(u: E \times A \rightarrow B,\) and a locally integrable function k from \(\mathbb{R}^n \times \mathbb{R}^n \backslash \{(x, x): x \in \mathbb{R}^n\}\) into E such that $$T\;f(x) = \int u(k(x, y), f(y))dy$$ for every A-valued simple function f and \(x \notin \; supp \; f.\)
Generalized Lebesgue points for Sobolev functions
2017
In this article, we show that a function $f\in M^{s,p}(X),$ $0<s\leq 1,$ $0<p<1,$ where $X$ is a doubling metric measure space, has generalized Lebesgue points outside a set of $\mathcal{H}^h$-Hausdorff measure zero for a suitable gauge function $h.$
Lineability of non-differentiable Pettis primitives
2014
Let \(X\) be an infinite-dimensional Banach space. In 1995, settling a long outstanding problem of Pettis, Dilworth and Girardi constructed an \(X\)-valued Pettis integrable function on \([0,1]\) whose primitive is nowhere weakly differentiable. Using their technique and some new ideas we show that \(\mathbf{ND}\), the set of strongly measurable Pettis integrable functions with nowhere weakly differentiable primitives, is lineable, i.e., there is an infinite dimensional vector space whose nonzero vectors belong to \(\mathbf{ND}\).
A Decomposition Theorem for the Fuzzy Henstock Integral
2012
We study the fuzzy Henstock and the fuzzy McShane integrals for fuzzy-number valued functions. The main purpose of this paper is to establish the following decomposition theorem: a fuzzy-number valued function is fuzzy Henstock integrable if and only if it can be represented as a sum of a fuzzy McShane integrable fuzzy-number valued function and of a fuzzy Henstock integrable fuzzy number valued function generated by a Henstock integrable function.
VECTOR MEASURES WITH VARIATION IN A BANACH FUNCTION SPACE
2003
Let E be a Banach function space and X be an arbitrary Banach space. Denote by E(X) the Kothe-Bochner function space defined as the set of measurable functions f : Ω → X such that the nonnegative functions ‖f‖X : Ω → [0,∞) are in the lattice E. The notion of E-variation of a measure —which allows to recover the pvariation (for E = Lp), Φ-variation (for E = LΦ) and the general notion introduced by Gresky and Uhl— is introduced. The space of measures of bounded E-variation VE(X) is then studied. It is shown, among other things and with some restriction of absolute continuity of the norms, that (E(X))∗ = VE′ (X ∗), that VE(X) can be identified with space of cone absolutely summing operators fr…
A Constructive Minimal Integral which Includes Lebesgue Integrable Functions and Derivatives
2000
In this paper we provide a minimal constructive integration process of Riemann type which includes the Lebesgue integral and also integrates the derivatives of differentiable functions. We provide a new solution to the classical problem of recovering a function from its derivative by integration, which, unlike the solution provided by Denjoy, Perron and many others, does not possess the generality which is not needed for this purpose.The descriptive version of the problem was treated by A. M. Bruckner, R. J. Fleissner and J. Foran in [2]. Their approach was based on the trivial observation that for the required minimal integral, a function F is the indefinite integral of f if and only if F'…
Poincaré inequalities and Steiner symmetrization
1996
A complete geometric characterization for a general Steiner symmetric domain Ω ⊂ Rn to satisfy the Poincare inequality with exponent p > n−1 is obtained and it is shown that this range of exponents is best possible. In the case where the Steiner symmetric domain is determined by revolving the graph of a Lipschitz continuous function, it is shown that the preceding characterization works for all p > 1 and furthermore for such domains a geometric characterization for a more general Sobolev–Poincare inequality to hold is given. Although the operation of Steiner symmetrization need not always preserve a Poincare inequality, a general class of domains is given for which Poincare inequalities are…
Vector-valued Hardy inequalities and B-convexity
2000
Inequalities of the form $$\sum\nolimits_{k = 0}^\infty {|\hat f(m_k )|/(k + 1) \leqslant C||f||_1 } $$ for allf∈H 1, where {m k } are special subsequences of natural numbers, are investigated in the vector-valued setting. It is proved that Hardy's inequality and the generalized Hardy inequality are equivalent for vector valued Hardy spaces defined in terms ff atoms and that they actually characterizeB-convexity. It is also shown that for 1<q<∞ and 0<α<∞ the spaceX=H(1,q,γa) consisting of analytic functions on the unit disc such that $$\int_0^1 {(1 - r)^{q\alpha - 1} M_1^q (f,r) dr< \infty } $$ satisfies the previous inequality for vector valued functions inH 1 (X), defined as the space ofX…